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Abstract 

The increasing interest in improving the accessibility 

and implementation of psychiatric solutions in diagnosing 

and treating mental and neurological disorders is driven 

by the need for real-time patient monitoring. One 

promising approach is emotion recognition using 

physiological signal complexity detection. Complexity 

measures involving crucial events, which are brief 

intervals of intermittent turbulence that resemble fractal-

like behaviour and a part of temporal biosignals have been 

used to analyze physiological signals, with the assumption 

that healthy and pathological signals differ in their levels 

of complexity. However, there is limited knowledge about 

the relationship between physiological signals, and 

psychopathology. Changes in emotion are reflected in 

heartbeat variations, and valence and arousal are 

psychological features of emotion. Crucial events, patterns 

in the heart rate that identify instances of change, can be 

detected using the novel multiscaled modified diffusion 

entropy analysis (MSMDEA), which has been shown to 

distinguish healthy from pathologic cardiac signals and 

different types of pathologic signals at high statistical 

significance (p<0.0001) compared to using MDEA on its 

own. 

 

 

1. Introduction 

A mental disorder can be characterized as a clinically 

significant disturbance in an individual's cognitive 

functioning, emotional management, or behavioral 

tendencies.  Typically, it is associated with the subjective 

sensation of distress or impairment [1]. In 2019, over 970 

million individuals globally, experienced a mental health 

disorder. According to the study conducted by GBD 

(Global Burden of Disease) in 2022, anxiety and 

depressive disorders exhibited the highest prevalence rates 

among the various disorders examined [2]. Recent studies 

conducted by universities and hospital researchers in the 

emirates of the UAE revealed that more than 50% of the 

screened participants suffered from mental health 

disorders, of which the most common are anxiety and 

depression [3,4]. The global decline in mental health and 

the growing prevalence of anxiety and major depressive 

disorders is leading to an increased demand on mental 

health services. However, mental health services are 

limited leading to an increase of undiagnosed cases and 

lack of intervention. where treatment is not as effective [1, 

3-5]. The current mental health questionnaires often rely 

heavily on self-reporting [5]. However, managing short-

term and chronic mental or neurological disorders requires 

thorough follow-up and real-time monitoring due to their 

unstable nature, and this is not practical, inaccessible, and 

costly with the current methods [6]. A recently emerging 

active field of research that aims to bridge the gap between 

prevalence of mental health disorders and availability of 

clinical psychiatric practices is emotion recognition by 

wearable technology for at-home assessment. The focus of 

investigations in the scientific community has shifted to 

emotion recognition, especially with artificial intelligence 

and data mining having increased the opportunities and 

accuracy of identifying emotions in the wild [6-8]. This can 

be useful not only for clinical applications, but also for 

brain-computer interactions or human-to-computer 

interactions where robots can take the data from 

physiological variables such as heart rate and respond 

appropriately to the human they are interacting with [9]. 

For this to occur, accurate emotion granularity recognition 

in real-time is required.  

 

1.1. Research Statement and Objectives 

The research proposes that crucial events are an option 

to provide the foundational framework for this real-time 

information. Crucial events are brief intervals of 

intermittent turbulence that resemble fractal-like behaviour 

[10,11]. This study aimed to investigate an innovative 

approach for the classification of emotions defined by 

different levels of valence and arousal based on the 

complexity dynamics of ECG time series from healthy 

participants. The current data and part of the methods used 

for the preliminary analysis came from the Korean 

Advanced Institute of Science and Technology (KAIST), 

South Korea, and the University of North Texas (UNT), 

United States, respectively. The project’s main objectives 

include: 

1. Improving the current algorithm for detection of 

emotion granularity. 

2. Validating and refining the proposed method on the 
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dataset provided by KAIST. 

3. Developing a reproducible and reliable emotion 

detection system that could be applied in real-time settings 

for mental health assessment. 

 

1.2. Background 

Emotion recognition using physiological signals and 

artificial intelligence classifiers has been the topic of 

extensive research in the last decade [12]. Despite 

obtaining high accuracy, AI-based classification still has 

major limitations such as the heavy computational cost, 

lack of generalization and reproducibility, lack of data 

recordings captured in the wild, frequent need to update 

and retrain the data classifiers, constant need to obtain 

large sample sizes to train proposed models, achieving 

near-perfect results in the detection of only one dimension 

of emotion at low granularity, and some more found in the 

extensive reviews on this topic [6,13]. The proposed 

approach in this research which addresses these 

shortcomings is based on computing and analyzing 

complexity measures of physiological signals. 

Complexity measures are valuable in assessing a range 

of psychological, neurological as well as physical 

conditions, as they may indicate an increase or decrease in 

the content of physiologic information as the basis of an 

individual's ability to adapt [14,15]. Complex systems such 

as the heart, exhibit statistical properties, including not 

only a mean heart rate and variance but also multiscaling 

and crucial events. Multiscale entropy analysis can 

quantify the complexity of physiologic time series, and a 

loss of complexity was shown to be a general characteristic 

of pathologic dynamics [16]. However, this type of 

assessment that relates features of crucial events and 

complexity to emotional or mental states has not been 

investigated and reported.  

There are various methods for multiscaling analysis, 

including different entropy measures, threshold 

determination, and time coarse-graining approaches [17]. 

These methods aim to improve the analysis of shorter time 

series and can be useful for bedside diagnostics and 

dynamical models of biological control systems. 

Nevertheless, their impact on analyzing the diffusion 

entropy parameters used to detect crucial events is 

unknown [14]. Further research is required to understand 

and optimize the use of statistical indices characterizing 

crucial events, particularly in the context of nonlinear and 

nonstationary long-term ECG signals captured in the wild.  

Crucial events are events characterized by changes in 

the complexity of the heart signal. The hypothesis that will 

be proven here states that determining crucial event 

occurrences in an ECG time series can identify significant 

characteristics in complex systems such as cardiac 

autonomic modulation of the heartbeat associated with 

emotional and mental states. Mathematically, crucial 

events have a waiting time distribution density with an 

inverse power law (IPL) index μ less than 3 and an IPL 

connected to 1/f noise derived from the diffusion entropy 

[18]. Multiscale Modified Diffusion Entropy Analysis 

(MSMDEA) is a modification of the diffusion entropy 

analysis (MDEA) proposed by Grigoloni [18,19] by 

adding a multiscaling component that has a higher 

sensitivity to changes in the heartbeat as well as providing 

additional information on physical characteristics of the 

heartbeat. MSMDEA optimizes the detection of crucial 

events to distinguish different emotion-labelled signals by 

computing the modified diffusion entropy at different 

temporal scales [20]. The development and refinement of 

methods such as MSMDEA can aid in accurately 

identifying and characterizing crucial events and provide 

novel markers of mental health and psychopathology and 

distinguish between different types of psychiatric 

pathology and monitor the progression of mental disorders. 

 

2. Methodology 

The heart signals dataset provided by the Korean 

Advanced Institute of Science and Technology (KAIST) 

involves ECG recordings, which were collected from a 

wearable chest strap sensor (Polar H10) worn by 90 

participants over four weeks. Participants rated their daily 

emotions in terms of a seven-scale valence and arousal 

score using the experience sampling method (ESM) [21]. 

Five-minute segments of the labelled ECG time series 

were preprocessed using the Kaiser window filtering 

technique for the removal of signal artifacts [22], after 

which the MSMDEA was used for quantifying the 

complexity measures of the signal at multiple time scales. 

The method is a novel indicator of complexity in the field 

of physiological signal analysis and combines a second 

moment-based temporal multiscaling [23] with the 

modified diffusion entropy analysis (MDEA) [18]. 

Descriptive statistics were used to visualize the results, and 

inferential statistical tests such as the ANOVA/t-test were 

used to determine any significant differences between the 

complexity measures of the different groups of emotion-

labeled ECG signals [20]. 

The KAIST dataset was aimed to develop the data 

analysis model and will be further used to optimize the 

technology as necessary.   

 

3. Results and Discussion 

In Table 1, the mean complexity index (µ) and standard 

deviation (SD) are provided for each combination of 

emotion dimension (high valence -HV, low valence -LV, 

high arousal -HA, and low arousal -LA) and temporal 

scaling factor (SF). The complexity indices of the ECG 

signals calculated by MSMDEA were averaged across 90 

participants for 20 scaling factors (Fig. 1), of which the 

first 7 are demonstrated in Table 1. Overall, as the scaling 

Page 2



Table 1 shows the complexity metrics of the four 

dimensions of emotion (high and low valence and arousal) 

averaged across participants for the first seven temporal 

scaling factors.   

 

 Mean Complexity Index µ±SD 

SF HV LV HA LA 

1 2.69 ±0.4 2.84 ±0.5 2.66 ±0.4 2.82 ±0.6 

2 2.65 ±0.3 2.78 ±0.4 2.62 ±0.3 2.75 ±0.4 

3 2.66 ±0.3 2.76 ±0.4 2.63 ±0.3 2.75 ±0.3 

4 2.68 ±0.3 2.76 ±0.3 2.66 ±0.3 2.74 ±0.3 

5 2.71 ±0.3 2.81 ±0.4 2.70 ±0.3 2.78 ±0.4 

6 2.72 ±0.3 2.83 ±0.4 2.73 ±0.3 2.80 ±0.4 

7 2.76 ±0.3 2.86 ±0.4 2.77 ±0.3 2.81 ±0.4 

Av 2.65 2.84 2.66 2.82 

 

factor increases, the complexity index increases, which 

reflects the multiple levels of complexity within the ECG 

signal. The variations of the complexity metrics across the 

different dimensions of emotion may indicate that different 

emotional states have distinct effects on the complexity of 

ECG signals. This suggests that each state of emotion has 

a signature complexity index. The underlined complexity 

indices indicate the ones closest to the critical complexity 

value of 2, and they mostly occur from the 2nd to the 4th 

scale factor. The maximum SD values are found at the first 

temporal scale factor, after which they generally decrease 

as SF increases indicating the importance of temporal 

multiscaling for a more consistent characterization and 

comparison of the emotional states detected from ECG 

signals rather than looking at only one scale. 

The MSMDEA detects the presence of crucial events in 

the signals translated through the complexity index inverse 

power law (μ) which is used to characterize and distinguish 

emotion labels. High and low classes of valence and 

arousal are distinct in their corresponding measures of 

complexity that lead to significant differences in crucial 

events (p-value<0.005) between the binary classes for each 

dimension of emotion across the different temporal scaling 

factors (Fig. 1). The high and low classes of valence are 

more significantly different (p<0.0001) than those of 

arousal (p<0.001), suggesting that the arousal aspect of 

emotions shows fewer temporal dimensions of complexity 

than valence, but they are enough to characterize and 

distinguish arousal labels from ECG.  

These results show that the more positive emotions are 

(high valence and arousal), the closer they are to critical 

complexity (μ=2). Systems closer to the maximum 

complexity of μ=2 exhibit a healthy physiological and 

psychological function. However, the more negative 

emotions (low valence and low arousal) show a significant 

loss of the dynamics of complexity as the complexity 

indices diverge further away from the value of 2 and 

converge closer to the value of 3, which reflects a higher 

state of randomness in the system indicating a resemblance 

to pathological systems (Fig. 1). Since it was established 

previously that physiological systems consist of both Type 

I (Fractional Brownian Motion -based) and Type II (crucial 

events -based) 1/f noise [14], these results suggest that low 

valence and low arousal ECG signals lose more of their 

Type I FBM-based 1/f noise, leaving them with more Type 

II crucial events-based 1/f noise.  On another note, the 

complexity index tends to approach 3 because the temporal 

scaling factor increases, as time coarse-graining at higher 

temporal scales reduces the length and thus, the complexity 

of analyzed signals, suggesting that group comparisons 

should be made at the same time scale rather than across 
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Figure 1. Overview of the difference between multiple states of emotion in terms of the averaged Mu (μ) on the y-axis 

across multiple temporal scales on the x-axis (a) High versus low emotion valence with high valence labels characterized 

by higher complexity (μ closer to its critical value of 2 which is the value reflecting maximum complexity [18]). (b) High 

versus low emotion arousal with high arousal labels characterized by higher complexity. 
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different time scales. 

The behavior of arousal complexity in these results 

agrees with another study that concluded the loss of 

complexity properties for negative arousal elicitation 

compared to the neutral emotional state [24]. The 

complexity measure used was approximate entropy 

(ApEn), and it showed a significant decrease during 

arousal elicitation at the lowest levels of valence in an 

experimental setup where 35 healthy participants were 

shown neutral and various degrees of unpleasant images. 

This supports the results of this paper which confirmed the 

loss of complexity dynamics at multiple time scales for 

negative emotions defined by their low valence (Fig. 1(a)). 
 

4. Conclusion 

The findings of the study have significance as they 

indicate that the complexity of electrocardiogram (ECG) 

signals exhibits variation across distinct temporal scaling 

factors and emotional aspects. The clinical significance of 

this knowledge lies in its ability to enhance our 

comprehension of the influence of emotional states on 

heart activity. Consequently, it holds promise for 

facilitating the diagnosis and monitoring of mental health 

disorders.  
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